The Tolerance Project: A MFA

The Tolerance Project Archive homepage


The Tolerance Project Donors

Sandra Alland

Gary Barwin

Emily Beall

Joel Bettridge

Greg Betts

Christian Bök

Jules Boykoff

Di Brandt

Laynie Browne & Jacob Davidson

Kathy Caldwell

Angela Carr

Abigail Child

George Elliott Clarke

Stephen Collis

Jen Currin

Moyra Davey

Anonymous Donor

Thom Donovan

Sarah Dowling

Marcella Durand

Kate Eichhorn

Laura Elrick

Jennifer Firestone

Rob Fitterman

Jenna Freedman

Dina Georgis

Barbara Godard

Nada Gordon

Kate Greenstreet

Rob Halpern & Nonsite Collective

Lyn Hejinian

Susan Holbrook

Catherine Hunter

Jeff T. Johnson

Reena Katz

Bill Kennedy

Kevin Killian

Rachel Levitsky

Dana Teen Lomax

Dorothy Trujillo Lusk

Jill Magi

Nicole Markotic

Dawn Lundy Martin

Steve McCaffery

Erica Meiners

Heather Milne

K. Silem Mohammad

Anna Moschovakis

Erín Moure

Akilah Oliver

Jena Osman

Bob Perelman

Tim Peterson

Vanessa Place

Kristin Prevallet

Arlo Quint

Rob Read

Evelyn Reilly

Lisa Robertson

Kit Robinson

Kim Rosenfield

Paul Russell

Trish Salah

Jenny Sampirisi

Heidi Schaefer

Susan Schultz

Jordan Scott

Evie Shockley

Jason Simon

Cheryl Sourkes

Juliana Spahr

Christine Stewart

John Stout

Catriona Strang

Chris Stroffolino

Michelle Taransky

Anne Tardos

Sharon Thesen

Lola Lemire Tostevin

Aaron Tucker

Nicolas Veroli

Fred Wah

Betsy Warland

Darren Wershler

Rita Wong

Rachel Zolf

Office of Institutional Research

Communications & External Affairs

Heidi Schaefer


Heidi Schaefer This poetic trace was used in:
Poem 27:
I don’t get it I don’t get it I don’t get it I don’t get it

Poem 31: Loss
Poem 37: Satisfactions are gaps in desire


DNA replication, the basis for biological inheritance, is a fundamental process occurring in all living organisms to copy their DNA. This process is "semiconservative" in that each strand of the original double-stranded DNA molecule serves as template for the reproduction of the complementary strand. Hence, following DNA replication, two identical DNA molecules have been produced from a single double-stranded DNA molecule. Cellular proofreading and error-checking mechanisms ensure near perfect fidelity for DNA replication.

In a cell, DNA replication begins at specific locations in the genome, called "origins". Unwinding of DNA at the origin, and synthesis of new strands, forms a replication fork. In addition to DNA polymerase, the enzyme that synthesizes the new DNA by adding nucleotides matched to the template strand, a number of other proteins are associated with the fork and assist in the initiation and continuation of DNA synthesis.

DNA usually exists as a double-stranded structure, with both strands coiled together to form the characteristic double-helix. Each single strand of DNA is a chain of four types of nucleotides: adenine, cytosine, guanine, and thymine. A nucleotide is a triphosphate deoxyribonucleoside; that is, a deoxyribose sugar attached to a triphosphate and a base. Chemical interaction of these nucleotides forms phosphodiester linkages, creating the phosphate-deoxribose backbone of the DNA double helix with the bases pointing inward. Nucleotides (bases) are matched between strands through hydrogen bonds to form base pairs. Adenine pairs with thymine and cytosine pairs with guanine.

DNA strands have a directionality, and the different ends of a single strand are called the "3' end" and the "5' end." These terms refer to the carbon atom in ribose to which the next phosphate in the chain attaches. In addition to being complementary, the two strands of DNA are antiparallel: they are oriented in opposite directions. This directionality has consequences in DNA synthesis, because DNA polymerase can only synthesize DNA in one direction by adding nucleotides to the 3' end of a DNA strand.

The pairing of bases in DNA through hydrogen bonding means that the information contained within each strand is redundant. The nucleotides on a single strand can be used to reconstruct nucleotides on a newly synthesized partner strand.

DNA polymerases are a family of enzymes that carry out all forms of DNA replication. A DNA polymerase can only extend an existing DNA strand paired with a template strand; it cannot begin the synthesis of a new strand. To begin synthesis of a new strand, a short fragment of DNA or RNA, called a primer, must be created and paired with the template strand before DNA polymerase can synthesize new DNA.

Once a primer pairs with DNA to be replicated, DNA polymerase synthesizes a new strand of DNA by extending the 3' end of an existing nucleotide chain, adding new nucleotides matched to the template strand one at a time via the creation of phosphodiester bonds. The energy for this process of DNA polymerization comes from two of the three total phosphates attached to each unincorporated base. (Free bases with their attached phosphate groups are called nucleoside triphosphates.) When a nucleotide is being added to a growing DNA strand, two of the phosphates are removed and the energy produced creates a phosphodiester (chemical) bond that attaches the remaining phosphate to the growing chain. The energetics of this process also help explain the directionality of synthesis - if DNA were synthesized in the 3' to 5' direction, the energy for the process would come from the 5' end of the growing strand rather than from free nucleotides.

DNA polymerases are generally extremely accurate, making less than one error for every 107 nucleotides added. Even so, some DNA polymerases also have proofreading ability; they can remove nucleotides from the end of a strand in order to correct mismatched bases. If the 5' nucleotide needs to be removed during proofreading, the triphosphate end is lost. Hence, the energy source that usually provides energy to add a new nucleotide is also lost.

For a cell to divide, it must first replicate its DNA. This process is initiated at particular points within the DNA, known as "origins", which are targeted by proteins that separate the two strands and initiate DNA synthesis. Origins contain DNA sequences recognized by replication initiator proteins (eg. dnaA in E coli' and the Origin Recognition Complex in yeast). These initiator proteins recruit other proteins to separate the two strands and initiate replication forks.

Initiator proteins recruit other proteins to separate the DNA strands at the origin, forming a bubble. Origins tend to be "AT-rich" (rich in adenine and thymine bases) to assist this process because A-T base pairs have two hydrogen bonds (rather than the three formed in a C-G pair)—strands rich in these nucleotides are generally easier to separate. Once strands are separated, RNA primers are created on the template strands and DNA polymerase extends these to create newly synthesized DNA.

As DNA synthesis continues, the original DNA strands continue to unwind on each side of the bubble, forming replication forks. In bacteria, which have a single origin of replication on their circular chromosome, this process eventually creates a "theta structure" (resembling the Greek letter theta: θ). In contrast, eukaryotes have longer linear chromosomes and initiate replication at multiple origins within these.

The replication fork is a structure which forms when DNA is being replicated. It is created through the action of helicase, which breaks the hydrogen bonds holding the two DNA strands together. The resulting structure has two branching "prongs", each one made up of a single strand of DNA.

In DNA replication, the leading strand is defined as the new DNA strand at the replication fork that is synthesized in the 5'→3' direction in a continuous manner. When the enzyme topoisomerase unwinds DNA, two single stranded regions of DNA (the "replication fork") are formed by the enzyme helicase. On the leading strand DNA polymerase III is able to synthesize DNA using the free 3' OH group donated by a single RNA primer and continuous synthesis occurs in the direction in which the replication fork is moving.

As helicase unwinds DNA at the replication fork, the DNA ahead is forced to rotate. This process results in a build-up of twists in the DNA ahead. This build-up would form a resistance that would eventually halt the progress of the replication fork. DNA topoisomerases are enzymes that solve these physical problems in the coiling of DNA. Topoisomerase I cuts a single backbone on the DNA, enabling the strands to swivel around each other to remove the build-up of twists. Topoisomerase II cuts both backbones, enabling one double-stranded DNA to pass through another, thereby removing knots and entanglements that can form within and between DNA molecules.

Bare single-stranded DNA has a tendency to fold back upon itself and form secondary structures; these structures can interfere with the movement of DNA polymerase. To prevent this, single-strand binding proteins bind to the DNA until a second strand is synthesized, preventing secondary structure formation.

Clamp proteins form a sliding clamp around DNA, helping the DNA polymerase maintain contact with its template and thereby assisting with processivity. The inner face of the clamp enables DNA to be threaded through it. Once the polymerase reaches the end of the template or detects double stranded DNA, the sliding clamp undergoes a conformational change which releases the DNA polymerase. Clamp-loading proteins are used to initially load the clamp, recognizing the junction between template and RNA primers

Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication occurs during the S phase (Synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints. Progression through checkpoints is controlled through complex interactions between various proteins, including cyclins and cyclin-dependent kinases.

The G1/S checkpoint (or restriction checkpoint) regulates whether eukaryotic cells enter the process of DNA replication and subsequent division. Cells which do not proceed through this checkpoint are quiescent in the "G0" stage and do not replicate their DNA.

Replication of chloroplast and mitochondrial genomes occurs independent of the cell cycle, through the process of D-loop replication.

Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome; these are not known to be regulated in any particular manner. Because eukaryotes have linear chromosomes, DNA replication often fails to synthesize to the very end of the chromosomes (telomeres), resulting in telomere shortening. This is a normal process in somatic cells — cells are only able to divide a certain number of times before the DNA loss prevents further division. (This is known as the Hayflick limit.) Within the germ cell line, which passes DNA to the next generation, the enzyme telomerase extends the repetitive sequences of the telomere region to prevent degradation. Telomerase can become mistakenly active in somatic cells, sometimes leading to cancer formation.